ENGN 38

Introduction to Computing for Engineers

Chapter 9: String Variables
There are two data types whose values represent strings of characters:

1. C-strings – an array of chars whose last element is '\0', the null character – inherited from C.

2. Strings – a class type defined in the standard library. You’ll need: #include <string>
Syntax for declaring a C-string variable

char cStr [10];

/* This automatically creates a C-string with the name cStr. It is an array of `10 characters whose last element is the null character. Beware: cStr can only hold 9 chars! */
Syntax for initializing a C-string variable

char myMessage[20] = “Hi There.”; //Note: If we omit “20” the array would be size 10.
Note: char myMessage[20] = { 'H', 'i', ' ', 'T', 'h', 'e', 'r', 'e', '.'} is not a C-string! (Why not?)
Using C-strings (Beware!)
1. Don’t let a C-string lose the '\0'.
If the array loses the ‘\0’ as the last element then you it is longer a C-string.

It is merely an array of base type char.

Bad things will happen if you try to use it as a C-string!
(e.g. functions that take C-strings won’t work!)

It is a good idea to take safeguards like this:

int index = 0;

while ((myMessage[index] != '\0' && (index < 20))

{ myMessage[index] = ‘X’;

 index++;

}

2. You can’t use an assignment statement with C-strings.
This is illegal:

cStr = “hello”;

To do an assignment you must use the function strcpy:

strcpy (cStr , “hello”);

// strcpy is a function found in <cstring>
Some versions of C++ allow a 3rd argument that gives the max number of chars to copy:

strcpy (cStr , “hello”, 9);
// The 3rd argument should be SIZE -1

Funny thing: This is legal:

char cStr [10] = “hello” ;
// Because this is an initialization, not an assignment.

3. You can’t use the comparison operator with C-strings.
This is illegal:

cStr = = “hello”;

To do a comparison you must use the function strcmp:

strcmp (cStr , “hello”);
// This function is also found in <cstring>

//Beware, it has strange behavior. It returns 0 (false) if they are same. See next page for more details.

Functions that use C-strings

There are many predefined functions that can be used with C-strings.
1. Some are in the library file <cstring>
2. Some are in the library file <cctype>
3. Some are member functions of the class iostream.
So they can only be invoked with calling objects such as cin and cout.

1. Functions in <cstring> that are used with C-strings

function name
arguments

Postcondition / Return value ____
strcpy

(targetC-string, C_string1)

targetC-string is changed
strcpy

(targetC-string, C_string1, limit)
targetC-string is changed
strcat

(targetC-string , C_string1)

targetC-string is changed
strcat

(targetC-string, C_string1, limit)
targetC-string is changed
strlen

(C-string1)

returns int (‘\0’ not counted in length)

strcmp*

(C-string1, C-string2)

returns int (neg int, 0 or pos int)
strcmp*

(C-string1, C-string2, limit)

returns int (neg int, 0 or pos int)

*If first argument is < the second (using lexicographic order), a negative number is returned.
 If the second > first, a positive number is returned. If they are the same, 0 is returned.
 If this expression is used as a bool then if it returns false that means they are the same!
 Note - This is counterintuitive!

2. Functions in <cctype> that are used with C-strings
function with parameters
Postcondition/Return value______________________
toupper (char)

returns the int corresponding to the uppercase version of char
tolower (char)

returns the int corresponding to the lowercase version of char
isupper (char)

returns true if char is uppercase letter, otherwise, false

islower (char)

returns true if char is lowercase letter, otherwise, false

isalpha (char)

returns true provided char is a letter of the alphabet, otherwise, false
isdigit (char)

returns true if char is a digit, otherwise, false
isalnum (char)

returns true if char is a letter or a digit, otherwise, false
isspace (char)

returns true if char is whitespace, otherwise, false

ispunct (char)

returns true if char is a printing character other than whitespace, digit or letter, otherwise, false

isprint (char)

returns true if char is a printing char, otherwise, false
isgraph (char)

returns true if char is a printing char other than whitespace, otherwise, false

isctrl (char)

returns true if char is a control character, otherwise, false

3. Member Functions of iostream that are used with C-strings

Function shown invoked
with arguments

Postcondition/Return value___ __ .
cin.getline (cStr, intNo)
cStr is filled with up to intNo of characters from the line in the input stream.

cin.get (char&Ch)

The argument receives the value of the next character from the input stream including '\n' and blanks, etc.

cin.putback (charCh)

Puts the value of charCh in the input stream.
cin.peek()

Returns next char in the input stream without reading it.

cin.ignore (intNo, charCh)
Ignores the next intNo of chars in the input stream –or– all the characters up to and including charCh, whichever comes first.
cout.put (charCh)

Outputs charCh to screen.

Insertion << and extraction >> operators with C-strings
The insertion and extractions operators of the iostream class work with C-strings:
char cStr [100];

cout << “Please give a value for C-string variable cStr”;

cin >> cStr;

Beware:
If user types in “Do be do to you!”
cStr will only have the value of “Do”.
Why? Because cin reads only up to the first whitespace.
To get the entire line, you must use the member function getline (defined above):

cin.getline(cStr, 80);

Example:
char cStr[100];

cout << “Enter some input:\n”;

cin.getline(cStr, 80);

What will the value of cStr be if the user types this: Do be do to you!

Answer: Do be do to you!
Example:
char shortCstr [5];

cout << “Enter some input:\n”;

cin.getline(shortCstr, 5);

What will the value of shortCstr be if the user types this: Do be do to you!

Answer: Do b

Because the C-string can only hold 4 characters.

The Standard Class string
C++ provides a standard class called string.
Objects of the class string are used to represent values that are strings of characters. They are intuitive and easy to use.
The class is defined in the standard library <string> so you will need:

#include <string>

using namespace std;

The string class allows the programmer to treat strings as a basic data type without needing to worry about the implementation details.
Syntax for declaring a string object

A string object is declared like any object of a class.

string strObj;
Syntax for initializing a string object
Remember that constructors initialize objects when the objects are declared.

The class string has a default constructor that initializes a string to the empty string. So in the declaration above myStringObject was initialized to the empty string.
There is also a constructor that takes a C-string and initializes the string to the value of the C-string.

string strObj (“I am a C-string”);

After this declaration is executed the value of anotherStringObject is “I am a C-string”. (Even though it is not!)

String Constructors:

string strObj;
// initializes value of strObj to the empty string: “”

string strObj (C-string);

// initializes the value of strObj to the value of the C-string argument
// remember a literal like “Wendy” is a C-string.

string strObj (string);
// initializes the value of strObj to the value of the string argument

Using strings

Strings are a better way to store and manipulate string data.

They are more intuitive than C-strings.

However C-strings are still very common because they are leftover from the C language.
With strings operators work as you would expect (unlike C-strings)
=
assignment operator

+
concatenation operator

+=
compressed code

Comparison operators use lexicographic order
==
!=
<
>
<=
>=

Unlike C-strings, you can use the assignment operator = with strings

string str1(“hi”), str2 = “goodbye”, str3;

str3 = “adios”;

str2 = str3;

Notes:
· The = is overloaded!

· Quoted strings are actually C-strings but there is automatic type conversion of C-strings to strings. So the above is OK.

· string string1(“hi”); has exactly the same result as string string1 = “hi”;

Unlike C-strings, you can use the concatenation operator + with strings

str 3 = str1 + “ ” + str2 + “ adios”;

Note that + is overloaded to take any order of values of C-strings and strings.

(If this overloading were not there, and + was used with a C-string, the compiler would look for a constructor that can perform a type conversion to convert the C-string to a value for which + did apply.)
The insertion << and extraction >> operator also work with strings objects:
But but cin still can’t read whitespace.

So as with a C-string, to get a value into a string that has spaces, we need to use a function called getline. However, the function getline used with string objects is not the same as the function getline used with C-strings.

cin.getline (cStr, intNo) vs. getline (cin, strObj)

The first is a member function of the class iostream.

It is found in the file <iostream> .

This function takes a C-string argument.

The second is a regular function.

It is found in the file <string>.

This function takes a string object argument.
Example:
string shortStr;

cout << “Enter some input:\n”

getline (cin, shortStr);

What will the value of shortStr be if the user types this: Do be do to you!
Answer: Do be do to you! /
/* Just because we named it shortStr doesn’t mean it is. Strings will be as long as they have to be. */

There is another version of the function getline:

getline(cin, strObj, charCh)

This will read the input stream up to the charCh and put that value into strObj.
some member functions of the string class

Member Function

Arguments

Postcondition/Return value______
strObj.c_str()

none

Converts the string to a C-string.

e.g.

ifstream inputData;
string filename;
cout << “\nType in a file name. \n”;

cin >> fileName;

inputData.open(fileName.c_str())

strObj.length()

none

Returns the length of the string
strObj[i]

Returns element i. You can access the characters in a string object in the same way that you access array elements. You still need to be careful not to use an illegal index value.

strObj.at(i)

int
Returns element i and checks to see if it is out of range. If i evaluates to an illegal index the program will terminate and give an error message.
e.g.
string myString(“Mary”);

cout << myString[6] << endl;

// no error message

cout << myString.at(6) << endl;

// program terminates with err msg

strObj.substr(pos, length)
2 ints
Returns substring of calling object starting at position pos and with length characters.

strObject.empty()
none

Returns true if calling object is empty string

strObj.insert(pos, str2)
int and string

Inserts str2 into strObject at position pos

strObj.remove(pos, length)
2 ints

Removes substring of size length, starting at pos.

strObj.find(str1)
string
Returns index of first occurrence of str1 in strObject

strObj.find(str1, pos)
string and int
Returns index of first occurrence of str1 in strObject; the search starts at pos

strObj.find_first_of(str1, pos) string and int
Returns index of first instance in strObject of any char in str1, start search at pos

strObj.find_first_not_of(str1, pos) string and int
Returns index of first instance in strObject of any char not in str1, start at pos

Automatic type conversions between
string objects and C-strings
C++ will perform an automatic type conversion of a C-string to a string object.
But not of a string object to a C-string.

char cStr[] = “This is my C-string”;

string strObj (“This is my string Object”);

So you can do this:

strObj = cStr;

But not this:

cStr = strObj;

Or this:

strcpy(cStr, strObj);

//the second argument also must be a C-string.

So you need to do this:

strcpy(cStr , strObj.c_str());

But not this:
cStr = strObj.c_str();
// Because you can’t use the assignment op with C-strings!

Page 3 of 7

