ENGN 38

Introduction to Computing for Engineers

Chapter 11: Separate Compiling & Namespaces
Thus far we have used just one file for our programs.

This file has included all three components of a C++ program:

1. the interface (the stuff before main that gives enough information so that a user can use “it”)

2. the implementation (the stuff after main that makes it work – i.e. the code!)

3. the program itself (main)

Now we will separate these components into separate files.

Advantages of putting a C++ program into separate files
(and compiling them separately):

· Reduces the amount of compiling that needs to be done.

· If you change a program only the one file needs to be recompiled.

· A file containing implementation only needs to be compiled once but it can be used many times by many different programs.

· Encapsulation is more easily accomplished.

Encapsulation Reviewed
The idea of encapsulation is to separate knowing how to use something (a class, a function, etc.) from understanding how it works.

Knowing how to use a class, a function, etc. is considered the interface.
Knowing how to a class, a function, etc. works is considered the implementation.
For example the instructions on how to use a car (in the owner’s manual) is separate from the details of how the car runs (in the engineer’s design calculations and drawings).

If this is done perfectly then a programmer can change the details of how a class or function is implemented without having to change the interface or any program that uses it.

To accomplish encapsulation for a class:

· Make all member variables of a class private.

· Make each of the basic operations for a class either public member functions or ordinary functions. (Or an overloaded operator or a friend function.)

· Make the implementation unavailable to the programmer.
This is done by placing the function definitions and overloaded operator definitions in a separate file.

How is encapsulation accomplished for a function?

The separate parts (files) of a C++ program will be put into 3 separate files
1. The interface goes into an interface file.
2. The implementation goes into an implementation file.
3. The program goes into a program file.
interface / header file – xxx.h
· An interface file must have a descriptive name with the extension .h
· An interface file contains all the information necessary for a programmer to understand how to use the items in it.
Hence the things placed inside an interface/header file are:
· function declarations/prototypes
· class definitions
(Note that we have a bit of a problem here because part of the class definition is actually the implementation. Specifically anthing in the private section with include the member variables and the helping function prototypes. Ah well….The world is not perfect and sometimes requires compromise.)
· overloaded operator declarations/prototypes
· comments, comments, comments! To fully describe how to use each function or operator.
· An interface/header file is never compiled on its own.
When a file is compiled it first goes to the C++ preprocessor. One of the most important things that the preprocessor does is to replace all the include directives with the text in the header file that they reference. So the code in an interface file will be compiled when it is placed into a file that has an include directive that references it.

implementation file – xxx.cpp

· An implementation file must have the same name as its interface file, however with the extension .cpp
· An implementation file contains all the code necessary to make functions work the way they are supposed to, i.e. the code to implement the items in the header file with the same name (albeit different extension).
Hence the things placed inside an implementation file are:
· include directives for the header files that contain the items this file provides the implementation for.

#include “xxx.h”

Note - the quotes indicate that this file is not a predefined C++ file.

If it were predefined you would use < >:

#include <iostream>
· all function definitions (private & public member functions, ordinary, etc.)
· overloaded operator definitions
· An implementation file needs only to to be compiled once.
(Unless, of course you change what is in it. Then you will need to recompile it.)
application / driver / program file – yyy.cpp
· A driver file must have a descriptive name that is different than any implementation file it uses with the extension .cpp

· A driver file contains your program.
Hence the things placed inside a driver file are:

· include directives
· the int main() function
· anything else needed for the program
· A driver file is complied separately from the implementation file.

Linking

Once the application file and the implementation file are compiled, they still need to be connected so that they can work together. This is called linking the files and is done by a separate utility called a linker. Don’t worry: this is usually done automatically! In most IDEs these various files are combined into a project.

Problem

A program may be more than 3 files. e.g it might use more than one class, each of which have their own pairs of interface and implementation files. More than one of these files might have the same include directive for a class interface. C++ does not allow you to define a class more than once. So what to do? How to prevent multiple definitions of a class?

 C++ has a way to say “if you have already included this stuff once before, do not include it again.”

Syntax to ensure that a class is not defined more than once
Whenever you write a class definition in a header file do this:

#ifndef VEHICLE_H

#define VEHICLE_H

class Vehicle

{

 public:
 ……….

 private:

 ……….

}

#endif

// If a flag called VEHICLE_H is already defined, then the compiler skips everything until the #endif statement below.
// This statement defines a flag called VEHICLE_H

// The flag is put on a list to indicate that VEHICLE_H has been seen.

// Convention dictates that it is a flag for a header file called Vehicle.h

This will take care of it.

Review of how a C++ program get executed

First it is important to understand that a compiler is a program that converts the programmer’s instructions (source code) into machine language (object code).
Compiling is process of turning programming language into machine language.

1. First the programmer writes the source code in the C++ language and saves it in a file with extension .cpp: e.g. myProgram.cpp (This is the application/program/driver file.)

2. This needs to be preprocessed. The preprocessing step puts the text of the header files that are referenced by an include directive into the source code. It also does some other things.

3. Then all of this source code is compiled and becomes object code: myProgram.obj

4. Finally this object code is linked with object code from other files. (These other files are the implementation files that correspond to the header files that have already been compiled.) After the linking you have executable code: myProgram.exe

[image: image1.png]myHeaderFilel.h myHeaderFile2.h
namespace Wendy namespace Wendy

definition_4

definition_1 it
2 definition_5

definition_2 it
definition 3 definition_6

The linker adds the object code from previously compiled implementation files to the object code produced from your source code to produce exe. code

Namespaces
A namespace is a collection of name definitions, including classes, functions and variables.

Everything that is named (functions, classes, variables, etc.) is placed into a namespace.

Think of a namespace as a storage room that you place things in.

A namespace can be turned on and off so the names inside may be reused.

There are 4 catagories of namespaces:

1. the standard namespace
contains all the names defined in many of the std C++ library files such as iostream.
One way to have the definitions in the std namespace available to you code is to insert the using directive: using namespace std;

2. the global namespace
If code is not placed in a specific namespace, then it is automatically put in a namespace known as the global namespace. It does not have a using directive because you are always using the global namespace. You could say that there is always an implicit automatic using directive that says you are using the global namespace.

3. a user defined namespace

4. the unnamed namespace
All names defined in the unnamed namespace are local to the compilation unit only. This means the names can be reused outside the compilation unit.
(A compilation unit is a file, such as a class implementation file, along with all the files that are #included in the file, such as the interface header file for the class.)

Syntax

Placing names inside a namespace
Creating a user defined namespace

To place an item into a namespace simply place it in a namespace grouping with this syntax:

namespace Wendy
// Wendy may or may not already exist.
{

definition_1 // e.g. int velocity;

definition_2
// e.g. class Vehicle { …};

definition_3
// e.g. void calcVelocity (int, double);
}
The names defined in this block are in the namespace Wendy.
You can place groupings that are in different files inside the same namespace!

Making the names available to your program

There are three ways to make the name definitions in a namespace available to your program:

1) using directives

2) using declarations

3) name qualifiers

Using Directives

A using directive makes all the names in a namespace available for the block in which the using directive appears.

Syntax for a using directive:
using namespace namespaceName;
Example:

using namespace std;

Note:
· If the using directive is at the top of a file (outside all blocks), then it applies to the entire file, including all the blocks in the file.
· If a using directive is at the start of a block, it applies to the whole block.
· If a using directive appears in the middle of a block, it applies from the place where the using directive occurs to the end of the block.
Be careful:
You can utilize more than one namespace in the same program.
However, you need to be careful if they each contain an item with the same name.
For example, suppose NS1 and NS2 both have a function called myFun with the same signature.
This is OK:

{

using namespace NS1;

myFun();

}

{

using namespace NS2;

myFun();
// This is a different function from the one above
}

This is not OK:

{

using namespace NS1;

using namespace NS2;

myFun();

}

The compiler won’t know which namespace to look in for the definition of myFun.
Using Declarations

A using directive makes all the names inside the namespace available.

A using declaration makes only one name from a namespace available to the program.

Syntax for a using declaration:

using namespaceName::itemName;

Example:

using std::cin;

This statement makes only one of the names inside the standard namespace available to the program.
So cin is available, but not cout.

Suppose namespace NS1 contains the definitions for two names: fun1 and funny.

Additionally namespace NS2 contains the definitions for two names: fun2 and funny (a different function than the one in NS1 but with the same signature).

This is OK to put inside the same block:

using NS1::fun1;

using NS2::fun2;

This is OK to put inside the same block only if funny is never used:

using namespace NS1;

using namespace NS2;

A using directive only potentially introduces the names in a namespace.
As long as you never actually use funny, the compiler will be happy.

This is not OK to put inside the same block:

using NS1::funny;

using NS2::funny;
So what if you want to use both functions called funny in the same block?

Answer:

Qualifying Names

A third way to make a name available is to qualify the name with the namespace that it is found in.
Syntax for qualifying name:

namespaceName::itemName; //If the item is a function, the argument list will appear here

Example:

NS1::fun1();

// to invoke the function fun1
or this:

int getInput(std::istream inputStream)
// to specify a parameter type

Suppose istream is a type (class) defined in Wendy.
Then this:

using namespace Wendy;

void someFunction(istream param1, std::istream param2);

will mean param1 is of the type istream as defined in Wendy and param2 is of the type istream defined in the std namespace.
Unnamed Namespaces

A compilation unit is a file, such as a class implementation file, along with all the files that are included in the file. (For example the interface header file for the class.)
Every compilation unit has an unnamed namespace.

namespace

{
definition_1

definition_2

}

All names defined here are local to the compilation unit and so the names can be reused for something outside the compilation unit.
Nested Namespaces

It is legal to nest namespaces.

When qualifying a name form a nested namespace, you simply qualify twice.

namespace S1

{

namespace S2

{

void sample()

{

….

}

}

}

To invoke sample outside namespace S1:

S1::S2::sample();

To invoke sample outside namespace S2 but within namespace S1:

S2::sample();

Executable code

(myProgram.exe)

Start-up code

Linker

Adds the library of precompiled files

 that are needed for the implementation of the items in the header files.

Library code

Object code

(myProgram.obj)

Preprocessed C++ source code

Contains include files. This is a temporary file.

C++ compiler

Changes the high level programming language into low level machine language.

C++ Preprocessor

Gets rid of comments and includes the code from the header files via the #include directives.

(The header files are just the prototypes; not the implementations.)

C++ source code

(myProgram.cpp)

You can use a text editor such as Notepad to create this;�usually you give it an extension of .cpp

Page 8 of 8

