ENGN 38

Introduction to Computing for Engineers

Chapter 14: Inheritance
Base Classes and Derived Classes

A generalized form of a class can be defined and compiled. Later, a more specialized version can be defined and inherit many properties of the general class.

The new class, known as a derived class, is created from the general class called the base class. The derived class automatically has all the member variable and the ordinary member functions of the base class. It will not have its constructors or private member functions. The derived class inherits the member variables and ordinary member functions. It can also have additional member function and additional member variables.

Consider employees of City College. There are classified (hourly paid) and certificated (salaried). Let’s define a general class of Employees.

//This is in the header file “employee.h”

//This is the interface for the class Employee.

//This is primarily intended to be used as a base class to derive classes for different kinds of employees.

#ifndef EMPLOYEE_H

#define EMPLOYEE_H

#include <string>

using std::string;

namespace SavitchEmployees

{

 class Employee

 {

 public:

 Employee();

 Employee(string theName, string theSsn);

 string getName() const;

 string getSsn() const;

 double getNetPay() const;

 void setName(string newName);

 void setSsn(string newSsn);

 void setNetPay(double newNetPay);

 void printCheck() const;

 private:

 string name;

 string ssn;

 double netPay;

 };

}//SavitchEmployees

#endif //EMPLOYEE_H

//This is in the implementation file: “employee.cpp”

//This is the implementation for the class Employee.

#include <string>

#include <cstdlib>

#include <iostream>

#include "employee.h"

using std::string;

using std::cout;

namespace SavitchEmployees

{

 Employee::Employee() : name("No name yet"), ssn("No number yet"), netPay(0)

 {

 //deliberately empty

 }

 Employee::Employee(string theName, string theNumber)

 : name(theName), ssn(theNumber), netPay(0)

 {

 //deliberately empty

 }

 string Employee::getName() const

 {

 return name;

 }

 string Employee::getSsn() const

 {

 return ssn;

 }

 double Employee::getNetPay() const

 {

 return netPay;

 }

 void Employee::setName(string newName)

 {

 name = newName;

 }

 void Employee::setSsn(string newSsn)

 {

 ssn = newSsn;

 }

 void Employee::setNetPay (double newNetPay)

 {

 netPay = newNetPay;

 }

 void Employee::printCheck() const

 {

 cout << "\nERROR: printCheck FUNCTION CALLED FOR AN \n"

 << "UNDIFFERENTIATED EMPLOYEE. Aborting the program.\n"

 << "Check with the author of the program about this bug.\n";

 exit(1);

 }

}//SavitchEmployees

Note that the function printCheck is not very useful. But it makes sense if you think about the fact that you can’t write a pay check for an undifferentiated Employee object. When we define the derived classes of HourlyEmployee and SalariedEmployee, we will redefine this function.

Here are the interface files of two derived classes, HourlyEmployee and SalariedEmployee.
//This is the header file “hourlyemployee.h”
//This is the interface for the class HourlyEmployee.

#ifndef HOURLYEMPLOYEE_H

#define HOURLYEMPLOYEE_H

#include <string>

#include "employee.h"

using std::string;

namespace SavitchEmployees

{

 class HourlyEmployee : public Employee

 {

 public:

 HourlyEmployee();

 HourlyEmployee(string theName, string theSsn,

 double theWageRate, double theHours);

 void setRate(double newWageRate);

 double getRate() const;

 void setHours(double hoursWorked);

 double getHours() const;

 void printCheck() ;

 private:

 double wageRate;

 double hours;

 };

}//SavitchEmployees

#endif //HOURLYMPLOYEE_H

Note the syntax for the definition of the derived class.

This class has the member variables from the base class: name, ssn and netPay.

It also has two new members variables: wageRate and hours.

The definition of the derived class only needs to declare these.

This class has the member functions from the base class: getName, getSsn, getNetPay, setName, setSsn, setNetPay and printCheck.

In addition to the inherited member functions, it added the new member functions: setRate, getRate, setHours, and getHours.

Inheritance allows you to reuse the code from the base class. You don’t have to rewrite the code for the variables and functions that the derived classes have in common.

Other terms used: parent class, child class, ancestor class, descendant class.

//This is the header file salariedemployee.h.

//This is the interface for the class SalariedEmployee.

#ifndef SALARIEDEMPLOYEE_H

#define SALARIEDEMPLOYEE_H

#include <string>

#include "employee.h"

using std::string;

namespace SavitchEmployees

{

 class SalariedEmployee : public Employee

 {

 public:

 SalariedEmployee();

 SalariedEmployee (string theName, string theSsn,

 double theWeeklySalary);

 double getSalary() const;

 void setSalary(double newSalary);

 void printCheck();

 private:

 double salary;//weekly

 };

}//SavitchEmployees

#endif //SALARIEDEMPLOYEE_H

Redefined Functions

Note that the function printCheck is declared in the derived class. Why? Because if you want to redefine the function for the derived class, then you do declare it in the derived class definition.

Of course, only the new or redefined function definitions need to be in the class implementation file.

//This is the file: hourlyemployee.cpp

//This is the implementation for the class HourlyEmployee.

//The interface for the class HourlyEmployee is in

//the header file hourlyemployee.h.

#include <string>

#include <iostream>

#include "hourlyemployee.h"

using std::string;

using std::cout;

using std::endl;

namespace SavitchEmployees

{

 HourlyEmployee::HourlyEmployee() : Employee(), wageRate(0), hours(0)

 {

 //deliberately empty

 }

 HourlyEmployee::HourlyEmployee(string theName, string theNumber,

 double theWageRate, double theHours)

 : Employee(theName, theNumber), wageRate(theWageRate), hours(theHours)

 {

 //deliberately empty

 }

 void HourlyEmployee::setRate(double newWageRate)

 {

 wageRate = newWageRate;

 }

 double HourlyEmployee::getRate() const

 {

 return wageRate;

 }

 void HourlyEmployee::setHours(double hoursWorked)

 {

 hours = hoursWorked;

 }

 double HourlyEmployee::getHours() const

 {

 return hours;

 }

 void HourlyEmployee::printCheck()

 {

 setNetPay(hours * wageRate);

 cout << "\n__\n";

 cout << "Pay to the order of " << getName() << endl;

 cout << "The sum of " << getNetPay() << " Dollars\n";

 cout << "__\n";

 cout << "Check Stub: NOT NEGOTIABLE\n";

 cout << "Employee Number: " << getSsn() << endl;

 cout << "Hourly Employee. \nHours worked: " << hours

 << " Rate: " << wageRate << " Pay: " << getNetPay() << endl;

 cout << "___\n";

 }

}//SavitchEmployees

//This is the file salariedemployee.cpp

//This is the implementation for the class SalariedEmployee.

//The interface for the class SalariedEmployee is in

//the header file salariedemployee.h.

#include <iostream>

#include <string>

#include "salariedemployee.h"

using std::string;

using std::cout;

using std::endl;

namespace SavitchEmployees

{

 SalariedEmployee::SalariedEmployee() : Employee(), salary(0)

 {

 //deliberately empty

 }

 SalariedEmployee::SalariedEmployee(string newName, string newNumber,

 double newWeeklyPay)

 : Employee(newName, newNumber), salary(newWeeklyPay)

 {

 //deliberately empty

 }

 double SalariedEmployee::getSalary() const

 {

 return salary;

 }

 void SalariedEmployee::setSalary(double newSalary)

 {

 salary = newSalary;

 }

 void SalariedEmployee::printCheck()

 {

 setNetPay(salary);

 cout << "\n__\n";

 cout << "Pay to the order of " << getName() << endl;

 cout << "The sum of " << getNetPay() << " Dollars\n";

 cout << "___\n";

 cout << "Check Stub NOT NEGOTIABLE \n";

 cout << "Employee Number: " << getSsn() << endl;

 cout << "Salaried Employee. Regular Pay: "

 << salary << endl;

 cout << "___\n";

 }

}//SavitchEmployees

If you want to use a definition of a function that is redefined for a derived class but you want the definition in the base class used with an object of the derived class you must use the scope resolution operator with the name of the base class:

HourlyEmployee Sally;

Sally.printCheck();

 //This uses the printCheck function defined in HourlyEmployee class

Sally.Employee::printCheck();

// This uses the printCheck function defined in Employee class

Note: redefining a function is not the same as overloading a function.
Functions not inherited by Derived classes:
· constructors

· private member functions

· destructors (we didn’t cover these)
· copy constructors (we didn’t cover these)
Constructors in Derived Classes
A constructor in a base class is not inherited in the derived class, but you can invoke it within the definition of a derived class constructor.

Consider the constructor definition for the class HourlyEmployee.

HourlyEmployee::HourlyEmployee (string theName, string theNumber, double theWageRate, double theHours) : Employee(theName, theNumber), wageRate(theWageRate), hours(theHours)

{

// deliberately empty

}

The Employee(theName, theNumber) is an invocation of the two-argument constructor for the base class Employee.

Consider the other constructor definition for the class HourlyEmployee.

HourlyEmployee::HourlyEmployee () : Employee(), wageRate(0), hours(0)

{

// deliberately empty

}

Here, the default (zero-argument) version of the base class constructor is called to initialize the inherited member variables.

You should always include an invocation of one of the base class constructors in the initialization section of a derived class constructor. Because it you don’t, the default version of the base class constructor will be invoked automatically.
The call to the base class constructor is the first action taken by a derived class constructor.
If class B is derived from class A and class C is derived from class B, then when an object of class C is declared, first a constructor for class A is called, then a constructor for B is called and finally the remaining actions of the class C constructor are taken.

So the following is equivalent to the above:

HourlyEmployee::HourlyEmployee () : wageRate(0), hours(0)

{

// deliberately empty

}

Use of Private Member Variables from the Base Class
Even though the member variables of the base class are also member variables of the derived class, the derived class cannot access them because they are private member variables of the base class. Weird! That is why in the function printCheck in the HourlyEmployees the functions setNetPay, getName and getNetPay were used instead of the member variables themselves.
Remembre that private member functions of the base class are not available at all to the derived class.
The protected QUALIFIER
To get around this problem of an inherited member variable of a derived class not being available to it, you can use the qualifier protected, (rather than the qualifiers public or private). Then for any class or function other than a derived class the effect is the same as if the member variable were labeled private. However, in a derived class the variable can be accessed by name. The same is true in any class derived from this derived class. (i.e. descendant classes.)

You can also mark member function with this qualifier for the same effect.
Some programmers frown on the use of this protected qualifier.
They say all member variable should be marked private.

